优秀圆柱体积教学设计

时间:2024-10-29 15:04:46
优秀圆柱体积教学设计

优秀圆柱体积教学设计

导语:教学设计者经常使用教学技术以改进教学以下是小编为你带来的优秀圆柱体积教学设计 ,希望对你有帮助。

教学目标:

1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。

教学方法:操作法、推理法、讲授法

教学过程

一、复习引新。

我们以前学过哪些立体图形?

生答:长方体和正方体。

它们的体积是怎么求的?

长方体:长×宽×高,正方体:棱长×棱长×棱长。

二、教学例4。

1、出示长方体和正方体。

它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?

生答:体积=底面积×高,所以长方体和正方体的体积相等。

2、出示圆柱。

猜一猜,圆柱的体积与长方体和正方体的体积相等吗?

生猜测:相等。

究竟如何,今天我们就一起来研究圆柱的体积。

板书课题:圆柱的体积。

问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)

生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。

依据是圆可以转化成长方形计算面积。

3、出示课件。

回顾圆的面积计算公式是怎样推导的。

4、回顾了圆的面积公式推导,你有什么启发?

生答:把圆柱转化成长方体计算体积。

5、动手操作。

请2位同学上台用教具来演示,边演示边讲解。

把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

多请几组同学上台讲解,完善语言。

提问:为什么用“近似”这个词?

6、教师演示课件。

把圆柱拼成了一个近似的长方体。

7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

生答:拼成的物体越来越接近长方体。

追问:为什么?

生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

出示讨论题。

1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的.?

3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

板书:

长方体体积=底面积×高

圆柱体积=底面积×高

9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

10、用字母如何表示。

11、出示例4。

现在你知道圆柱的体积与长方体、正方体的体积相等了吗?

为什么?

生答:体积相等,都是用底面积×高。

V=sh

三、巩固练习。

1、出示练习七第一题。

学生直接把答案填写在表中。

提问:你是根据什么填写的?

2、练一练。

这两题,你打算怎么计算?

生答:不知道底面积,要先算出底面积,再乘高。

3.14×2×5 = 62.8(平方厘米)

3.14×(6÷2)×8 = 226.08(平方厘米)

3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?

问:这道题和前面做的有什么不同?怎么计算?

生答:这是求容积的。所以数据是从里面量的。

4、练习七第2题。

观察下面的3个杯子,你能看出哪个杯子的饮料多?

请学生猜一猜。

请学生列出三道算式。

(1)3.14×(8÷2)×4

(2)3.14×(6÷2)×7

(3)3.14×(5÷2)×10

问:你能不求出结果直接比较出大小吗?

生答:第一个杯子的饮料多。

5、练习七第三题。

学生独立解答。

指名说说是怎样算的?

3.14×3×5×1= 141.3(千克)

141.3千克<150千克

答:这个保温茶桶不能盛150千克水。

四、总结。

今天这节课你学到了什么?

《优秀圆柱体积教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式